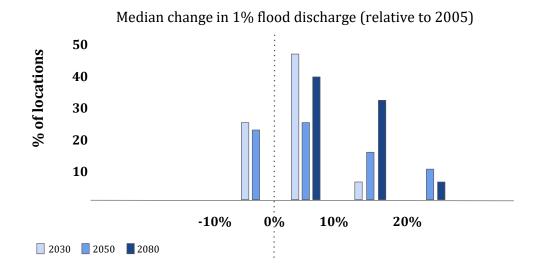
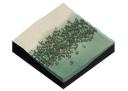

EPA Hypoxia Task Force, December 14, 2021

Our Cohort

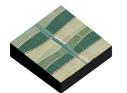


Hydrologic Analysis

Several levees are at risk of overtopping


Location	Levee	Probability of Overtopping for 2030 1% Flood
Mississippi River at Grafton, IL	Consolidated North County Levee System	1.074
Mississippi River at Winona, MN	Winona City & Prairie Island	1.043
Mississippi River at Helena, AR	Mississippi and White Rivers Below Helena System	1.026
Mississippi River at Chester, IL	Bois Brule Levee & Drainage District System	1.010
Mississippi River at Greenville, MS	Greenville Harbor - West Bank	0.988
Mississippi River at Baton Rouge, LA	Mississippi River West Bank - Below Morganza	0.987
Mississippi River at Baton Rouge, LA	Mississippi River East Bank	0.983
Mississippi River at Greenville, MS	Greenville Harbor - East Bank	0.959
Mississippi River at Chester, IL	Saint Genevieve Levee System No. 2	0.938

Solutions Analyzed

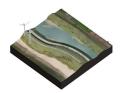


Wetland Restoration

Submerged Vegetation

Regenerative Agriculture

Reforestation


Secondary Channels*

Spillway Creation*

Controlled Overtopping*

Levee Armoring

^{*} Collectively termed Floodplain Expansion strategies

Example of Shovel Ready Project: St Genevieve Restoration along Levee #3

Example of a Mega Project: Vicksburg- Eagle Lake Restoration

Return on Investment: 200 Acre Hypothetical Wetland Reforestation

- · Key Assumption: City owns the land
- If robust carbon and nutrient removal markets exist, even small NbS projects can yield attractive returns

20-year NPV	\$380,000
IRR	9%
Payback Period	13 years

	Price Starting in 2021	
Carbon	\$20/MT CO2e	
Nitrate Removal	\$9.5/lb	
Phosphate Removal	\$4.2/lb	

Flood Damage Reduction Quantification

- To reduce the probability of overtopping by 10% for Levee #2 in St Genevieve in a 1% riverine flood in 2030
 - Nature-based solutions must offset 95,000 cfs of peak discharge
 - A set of wetlands with 60,000 acre-ft of flood storage can do this for a duration of ~ 8 hours of peak discharge
 - A reservoir with ~ 180,000 acre-ft can store this peak discharge for 24 hours
- "cutting the peak off a major flood is a local problem" flood expert at NOAA
- Smaller projects can still contribute significantly to
 - o Lessen the impact of smaller riverine floods
 - o Mitigate other types of floods e.g. flash floods
 - o Co-benefits e.g. carbon sequestration, nutrient removal, recreational tourism